ME 4791 Mechanical Behavior of Composites (Elective)

Catalog Description:	ME 4791 Mechanical Behavior of Composites (3-0-3)						
	Prerequisites: COE 3001 Mechanics of Deformable Bodies						
	Crosslisted with AE, CEE, CHBE, MSE, and PTFE.						
	Stress-strain behavior of composites, properties of matrix and reinforcing materials, mechanics of fiber-reinforced composites, lamina and laminate analysis, and mechanical performance.						
Textbook:	 P. K. Mallick, <i>Fiber-Reinforced Composites Materials, Manufacturing and Design</i>, CRC Press, 3rd Edition, 2008. Robert Jones, <i>Mechanics of Composite Materials</i>, CRC Press, 2nd Edition, 1998. 						

Topics Covered:

- 1. Introduction to composites including advantages, disadvantages, and applications.
- 2. Materials: Fibers and fillers, surface treatment of fibers, fiber content, density, voids.
- 3. Materials: Polymer matrix, metal matrix, and ceramic matrix.
- 4. Mechanics of unidirectional lamina (continuous or discontinuous fibers), including longitudinal and transverse tensile modulus, compressive strength and impact.
- 5. Micromechanics.
- 6. Characteristics of a fiber-reinforced lamina.
- 7. Engineering constants for orthotropic materials, plane stress.
- 8. Invariant properties, strengths of an orthotropic lamina.
- 9. Laminated structure, interlaminar stresses, macromechanical behavior of a laminate.
- 10. Classical lamination theory.
- 11. Performance: Static, tension, compression, shear, flexure.
- 12. Fatigue.
- 13. Impact and other properties.
- 14. Joining: Pin bearing, adhesive bonding.
- 15. Design for long term properties.
- 16. Conception and design of laminated composite structures.

Course Outcomes:

Outcome 1: The student will develop understanding of what a composite material is.

- 1.1 The student will demonstrate a basic understanding of what a composite material consists of, how it behaves, suitable applications, and limitations.
- 1.2 The student will demonstrate an understanding of how the structure and mechanical properties of the constituent materials affect the mechanical properties of the composite.

Outcome 2: The student will gain a working knowledge on mechanical behavior of composite materials, mainly on fiber reinforced polymers.

- 2.1 The student will demonstrate the ability to apply basic principles of mechanics.
- 2.2 The student will demonstrate understanding of how to predict the mechanical response of a composite material under hydrothermal and mechanical loadings.

- 2.3 The student will demonstrate an ability to select raw materials for a lamina, chose the proper stacking sequence of laminas, and design a laminated composite structure using software to best suit specific applications.
- 2.4 The student will demonstrate the ability to find information, summarize, comment, and critique studies on a specific topic related to mechanics of composites and the ability to write technical reports.

ME 4791													
	Mechanical Engineering Student Outcomes												
Course Outcomes	a	b	с	d	e	f	g	h	i	j	k		
Course Outcome 1.1	X												
Course Outcome 1.2	X				Х								
Course Outcome 2.1	X												
Course Outcome 2.2	X				Х								
Course Outcome 2.3			Х	Х			Х				Х		
Course Outcome 2.4							Х		Х	Х			

Correlation between Course Outcomes and Student Outcomes:

GWW School of Mechanical Engineering Student Outcomes:

(a) an ability to apply knowledge of mathematics, science and engineering

- (b) an ability to design and conduct experiments, as well as to analyze and interpret data
- (c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
- (d) an ability to function on multidisciplinary teams
- (e) an ability to identify, formulate, and solve engineering problems
- (f) an understanding of professional and ethical responsibility
- (g) an ability to communicate effectively
- (h) the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
- (i) a recognition of the need for, and an ability to engage in life-long learning
- (j) a knowledge of contemporary issues
- (k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice

Prepared by: Kyriaki Kalaitzidou