ME 4452 Control of Dynamic Systems (Elective)

Catalog Description:	ME 4452 Control of Dynamic Systems (3-0-3)								
	Prerequisites: ME 3017 System Dynamics								
	Modeling and simulation of dynamic systems in frequency and time domains. Feedback control analysis and design methods including root-locus, frequency response, and pole-placement. Introduction to digital control systems.								
Textbook:	Norman S. Nise, Control Systems Engineering, 6th Edition, Wiley, 2010.								
References:	Katsuhiko Ogata, <i>Modern Control Engineering</i> , 5th Edition, Prentice Hall, 2009.								

Topics Covered:

- 1. Modeling in the Laplace domain
- 2. Modeling in the time domain
- 3. Time response analysis and specifications
- 4. Stability analysis
- 5. Steady-state errors
- 6. Root-locus control design
- 7. Frequency response control design
- 8. State-space control design
- 9. Introduction to digital control systems
- 10. Control system applications and case studies

Course Outcomes:

Outcome 1: To teach students to perform a mathematical analysis of engineering dynamic systems in the time and frequency domains.

- 1.1 Students will demonstrate an understanding of various mathematical models, such as differential equation and transfer function models.
- 1.2 Students will demonstrate the ability to formulate state-space models of dynamic systems.
- 1.3 Students will demonstrate the ability to linearize the dynamic model of nonlinear systems.

Outcome 2: To develop students' understanding of stability, transient, and steady-state behavior of linear dynamic systems.

- 2.1 Students will demonstrate the ability to formulate the time response of a linear system based on its transfer function or state-space model.
- 2.2 Students will demonstrate the ability to derive the frequency response of a linear system and to construct its Bode diagrams.
- 2.3 Students will demonstrate the ability to identify a dynamic system from its time or frequency response.
- 2.4 Students will demonstrate how to evaluate the stability of dynamic systems both in the time and frequency domains.
- 2.5 Students will demonstrate an understanding of the transient and steady-state response specifications for dynamic systems.

Outcome 3: To develop students' skills in analyzing and designing feedback controllers in the time and frequency domains.

- 3.1 Students will demonstrate the ability to reduce block diagrams of multiple subsystems.
- 3.2 Students will demonstrate that they can analyze and design controllers using the root-locus technique.
- 3.3 Students will demonstrate the ability to design control compensation using frequency domain techniques.
- 3.4 Students will demonstrate an ability to design controllers in the time-domain using state-space methods.
- 3.5 Students will demonstrate when and how to apply various control design techniques to real-world engineering systems.
- 3.6 Students will demonstrate the ability to evaluate the performance of control systems by simulation.

ME 4452													
	Mechanical Engineering Student Outcomes												
Course Outcomes	a	b	с	d	e	f	g	h	i	j	k		
Course Outcome 1.1	Х												
Course Outcome 1.2	X												
Course Outcome 1.3	X												
Course Outcome 2.1	X				X								
Course Outcome 2.2	X				X								
Course Outcome 2.3	X				X								
Course Outcome 2.4	X				X								
Course Outcome 2.5	X				X								
Course Outcome 3.1					X								
Course Outcome 3.2					X								
Course Outcome 3.3					X								
Course Outcome 3.4					X								
Course Outcome 3.5										Х	Х		
Course Outcome 3.6										Х	Χ		

Correlation between Course Outcomes and Student Outcomes:

GWW School of Mechanical Engineering Student Outcomes:

- (a) an ability to apply knowledge of mathematics, science and engineering
- (b) an ability to design and conduct experiments, as well as to analyze and interpret data
- (c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
- (d) an ability to function on multidisciplinary teams
- (e) an ability to identify, formulate, and solve engineering problems
- (f) an understanding of professional and ethical responsibility
- (g) an ability to communicate effectively

- (h) the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
- (i) a recognition of the need for, and an ability to engage in life-long learning
- (j) a knowledge of contemporary issues
- (k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice

Prepared by: Jun Ueda