ME 4215 Manufacturing Process Analysis (Elective)

Catalog Description:	ME 4215 Manufacturing Process Analysis (3-0-3)
	Prerequisites: COE 3001 Mechanics of Deformable Bodies and ME 3210 Design, Materials, and Manufacture
	Corequisites: ME 3345 Heat Transfer
	First principles based modeling and analysis of manufacturing processes. Process design and optimization.
Textbook:	Serope Kalpakjian and Steven R. Schmid, <i>Manufacturing Processes for Engineering Materials</i> , 5th Edition, Prentice Hall, 2008.

Topics Covered:

- 1. Basics:
 - 1.1 Review of materials and mechanical properties
 - 1.2 Metrology and surface finish
 - 1.3 Taxonomy of manufacturing processes
- 2. Manufacturing process analysis:
 - 2.1 Solidification/molding processes: selected from
 - i) metal casting
 - ii) polymer and composites processing
 - 2.2 Mass conserving processes: selected from
 - i) bulk deformation: forging, rolling, extrusion, drawing
 - ii) sheet-metal forming: bending, stretching
 - 2.3 Subtractive processes: selected from
 - i) mechanical material removal: shaping, turning, milling
 - ii) non-mechanical material removal: EDM, ECM, Laser, EDM, WJM
 - 2.4 Additive processes: selected from
 - i) Joining methods: welding, adhesive bonding
 - ii) layer-by-layer manufacturing: stereolithography, direct laser melting/sintering
 - 2.5 Micro and nanomanufacturing methods: selected from photolithography, mechanical micromachining, self-assembly
- 3. Process design and optimization:
 - 3.1 Process design and optimization based on cost and time

Course Outcomes:

Outcome 1: To teach students to perform mathematical analyses of conventional and non-traditional manufacturing processes.

- 1.1 Students will demonstrate the ability to break down manufacturing processes for analysis.
- 1.2 Students will demonstrate the ability to identify known and unknown parameters including initial and boundary conditions for major manufacturing processes.
- 1.3 Students will demonstrate the ability to draw free body diagrams and control volumes of select manufacturing processes.
- 1.4 Students will demonstrate the ability to apply the fundamental principles from pre-requisite courses in mechanics, materials, and thermo-fluids to analyze manufacturing processes.

Outcome 2: To teach students to integrate core mechanical engineering principles to design manufacturing processes.

- 2.1 Students will demonstrate the ability to integrate the relevant core principles in mechanical engineering (mechanics, materials, and thermo-fluids) to solve problems in manufacturing.
- 2.2 Students will demonstrate the ability to carry out manufacturing process design based on first principles.

Outcome 3: Students will have a basic understanding of the economic considerations underlying manufacturing process optimization.

- 3.1 Students will demonstrate an understanding of the role of economics in manufacturing process selection.
- 3.2 Students will demonstrate the ability to perform simple cost and time based process optimization of select manufacturing processes.

ME 4215													
	Mechanical Engineering Student Outcomes												
Course Outcomes	а	b	с	d	e	f	g	h	i	j	k		
Course Outcome 1.1					Х						Х		
Course Outcome 1.2	X				X						Х		
Course Outcome 1.3	X				Х						Х		
Course Outcome 1.4	X				Х						Х		
Course Outcome 2.1	X				Х						Х		
Course Outcome 2.2	X		Х		Х						Х		
Course Outcome 3.1			Х						X		Х		
Course Outcome 3.2			Х								Х		

Correlation between Course Outcomes and Student Outcomes:

GWW School of Mechanical Engineering Student Outcomes:

- (a) an ability to apply knowledge of mathematics, science and engineering
- (b) an ability to design and conduct experiments, as well as to analyze and interpret data
- (c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
- (d) an ability to function on multidisciplinary teams
- (e) an ability to identify, formulate, and solve engineering problems
- (f) an understanding of professional and ethical responsibility
- (g) an ability to communicate effectively
- (h) the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
- (i) a recognition of the need for, and an ability to engage in life-long learning
- (j) a knowledge of contemporary issues
- (k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice

Prepared by: Shreyes Melkote