ME 4214 Mechanical Behavior of Materials (Elective)

Catalog Description:	ME 4214 Mechanical Behavior of Materials (3-0-3) Prerequisites: COE 3001 Mechanics of Deformable Bodies
	Problems involving resistance of materials to plastic deformation, fracture, fatigue, and creep; mechanical testing; computer-based methods; case studies of failure.
Textbook:	N.E. Dowling, <i>Mechanical Behavior of Materials</i> , 3rd Edition, Pearson Prentice Hall, 2007.

Topics Covered:

- 1. Mechanical testing
- 2. Stress-strain relationships
- 3. 3D states of stress
- 4. Failure criteria
- 5. Fracture mechanics
- 6. Fatigue (stress-based approach)
- 7. Fatigue crack growth
- 8. 3D non-linear stress-strain relationships (plasticity)
- 9. Constrained plasticity problems
- 10. Residual stresses
- 11. Fatigue (strain-based approach)
- 12. Other failure mechanisms (creep, wear, corrosion, environment assisted cracking)
- 13. Failure analysis

Course Outcomes:

Outcome 1: To teach students the mechanical properties and behavior of materials.

- 1.1 Students will demonstrate an understanding of the mechanical properties and behavior of materials.
- 1.2 Students will demonstrate the knowledge of how these properties are measured.

Outcome 2: To develop the student's ability to understand and apply the definitions of stress and strain in three dimensions along with the application of simple constitutive laws.

- 2.1 Students will demonstrate the ability to determine states of stress in three dimensions.
- 2.2 Students will demonstrate the ability to apply constitutive laws to solve deformable body problems.

Outcome 3: To train students to identify, formulate, and solve engineering problems involving resistance to plastic deformation, fatigue, and fracture.

- 3.1 Students will demonstrate the ability to identify engineering problems involving plastic deformation, fatigue, and fracture, and the tools required to solve these problems.
- 3.2 Students will demonstrate the ability to formulate problems involving multidimensions and apply failure theories.

3.3 Students will demonstrate recognition of failure mechanisms and identify key mechanical properties and analyses and/or experiments needed to determine cause of failure and evaluate solutions to prevent failure including professional and ethical responsibility.

ME 4214													
	Mechanical Engineering Student Outcomes												
Course Outcomes	а	b	с	d	e	f	g	h	i	j	k		
Course Outcome 1.1	X										X		
Course Outcome 1.2	X	Х									X		
Course Outcome 2.1	X										X		
Course Outcome 2.2	X										X		
Course Outcome 3.1	X		Х		Х						X		
Course Outcome 3.2	X		Х		Х						X		
Course Outcome 3.3	X	Х	Х		Х	Х					X		

Correlation between Course Outcomes and Student Outcomes:

GWW School of Mechanical Engineering Student Outcomes:

(a) an ability to apply knowledge of mathematics, science and engineering

- (b) an ability to design and conduct experiments, as well as to analyze and interpret data
- (c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
- (d) an ability to function on multidisciplinary teams
- (e) an ability to identify, formulate, and solve engineering problems
- (f) an understanding of professional and ethical responsibility
- (g) an ability to communicate effectively
- (h) the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
- (i) a recognition of the need for, and an ability to engage in life-long learning
- (j) a knowledge of contemporary issues
- (k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice

Prepared by: Richard W. Neu