NRE/ME 4803 Special Topics Course: Nuclear Reactor Materials Fall 2012

Catalog Description:	This course investigates the relationship between the structure and properties of materials used in nuclear reactors - specifically nuclear cladding and fuel under irradiation.	
Prerequisites	MSE 2001 or equivalent	
Textbook:	Gary Was "Fundamental Radiati 3540494715	ion Materials Science", Wiley,
References:	Don Olander "Fundamental Asp elements" Arthur Motta and Don Olander - new book not yet published	pects of Nuclear reactor Fuel "Light Water Reactor Materials"
Instructor	Chaitanya S. Deo	
Goals	This course provides a background on the types of materials used in nuclear reactors and their response to neutron irradiation. Materials problems encountered in the operation of nuclear power reactors for energy production are discussed here. The objective of the course is to give nuclear engineering students a background in materials, so they understand the limitations put on reactor operations and reactor design by materials performance.	
Grading	Homework Tests	30% 70%

Topics Covered:

The Radiation Damage Event Neutron–Nucleus Interactions Interactions Between lons and Atoms **Interatomic Potentials Collision Kinematics Ionization Collisions Energy Loss Theory** Range Calculations The Displacement of Atoms **Elementary Displacement Theory** Displacement Probability The Kinchin and Pease Model for Atom Displacements The Displacement Energy The Electron Energy Loss Limit. **Energy Transfer Cross Sections** Energy Loss by Electronic Excitation

Effects of Crystallinity The Displacement Cross Section **Displacement Rates** The Damage Cascade **Displacement Mean Free Path Primary Recoil Spectrum** Cascade Damage Energy and Cascade Volume Stages of Cascade Development. Behavior of Defects within the Cascade **Point Defect Formation and Diffusion Properties of Irradiation-Induced Defects** Thermodynamics of Point Defect Formation **Diffusion of Point Defects Correlated Diffusion Diffusion in Multi-component Systems** Diffusion along High Diffusivity Paths Radiation-Enhanced and Diffusion Defect Reaction Rate Theory **Point Defect Balance Equations Radiation-Enhanced Diffusion Defect Reactions Reaction Rate-Controlled Processes Diffusion-Limited Reactions Defect–Grain Boundary Reactions** Examples of Materials in Nuclear reactors -Light water reactors and Gen IV designs Oxide fuels - LWR **Zirconium Alloys LWR** Metal, Carbide and Nitride fuels Gen IV Steel and other metallic alloys Gen IV Phenomena encountered in nuclear reactors (pick 2-3 topics) Voids and cavities in Solids **Fission Product Behavior** Water Chemistry and its Influence on Corrosion Waterside Corrosion and Hydriding of Zr Cladding Fuel Rod Failure Mechanisms Phase Transformations under irradiation Inter Granular Stress-Corrosion Cracking (IGSCC) Irradiation Induced Mechanical Property Changes: Hardening and Embrittlement

Irradiation Creep and growth